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Basic concepts of the electronic models: 
E(2) electron-electron interactions,

U and J



The Hubbard model:                                          
a simple model to treat electron-electron correlation in solids

Extension of a tight-binding model…
electrons can hop between lattice sites with a probability given by the hopping

Spin Number of electrons with spin up on site l
Lattice sites Number of electrons with down up on site l

…plus one additional term
introduncing an energy amount for each pair of electrons occupying the same

lattice site representing Coulomb repulsion



The Hubbard model:                                          
a simple model to treat electron-electron correlation in solids

New ingredients appear with respect the standard tight-binding model

1. The spin: the electrons with opposite spin on the same lattice site repel each
other via electrostatic forces. 

The self-interaction (interaction of one electron with itself, i.e., with the same spin) 
are not considered

2. The occupation number for each lattice site

Assuming the most simple model with one atomic orbital per site, 



Ground state of a monoatomic chain with one-orbital 
per site within the Hubbard model

The larger the hopping parameter, the broader the band width,         
and metallic phase is favoured

The Hubbard term penalizes the occupation of a site with electrons of different
spin

If an atom is already occupied with a given density of electrons of a given spin, 
the electrons with different spin will feel a repulsion to hop there.

The inhibits the hopping and favours localized states



Relationship between the Hubbard model          
and the parameters in the SCALE-UP Hamiltonian

The Hubbard parameter couples the number of electrons with
different spin in a given lattice site

In the paper, this is called the antiparallel parameter [Eq. (27)]

But these are not the parameters that finally enter in the SCALE-UP Hamiltonian
In its final form, it is written in terms of parameters that couple:

- The total number of electrons in a given site (sum of the occupation for both spin), 
- The difference between electrons with spin up and electrons with spin down

In practice,  

Eq. (34) of the manuscript

Please, note that the used in the manuscript is not the of our Hubbard model



Relationship between the Hubbard model          
and the parameters in the SCALE-UP Hamiltonian

In its final form, it is written in terms of parameters that couple:

- The total number of electrons in a given site (sum of the occupation of both spin), 

To simulate the Hubbard model we need to impose that

Then, according to Eq. (39) of the paper, the two body energy term becomes

i.e. the term required by the Hubbard model with an

- The difference between electrons with spin up and electrons with spin down, 



Relationship between the Hubbard model          
and the parameters in the SCALE-UP Hamiltonian

In summary: to simulate the Hubbard model with SCALE-UP: 

Even more, since in the Hubbard model we include only the on-site
interactions, the previous parameters must be totally diagonal  



Ground state of a monoatomic chain with one-orbital 
per site within the Hubbard model

3.2 Shape of the electronic bands and density of states 21

(a) Sketch diamagnetic. (b) Bands diamagnetic. (c) DOS diamagnetic.

(d) Sketch ferromagnetic. (e) Bands ferromagnetic. (f) DOS ferromagnetic.

(g) Sketch antiferromagnetic. (h) Bands antiferromagnetic. (i) DOS antiferromagnetic.

Fig. 3.1 Plots of the sketch, bands and DOS for each configuration considered. The first row
belongs to a diamagnetic material, second row to a ferromagnetic material and third row to an
antiferromagnetic material.
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Diamagnetic:
Same amount of occupation for both spin channels

Ferromagnetic:
One spin component is more occupied than the other

The majority spin channel is the same from atom to atom

Antiferromagnetic:
One spin component is more occupied than the other
The majority spin channel changes from atom to atom



Linear chain of s-orbitals: 
The input file of SCALE-UP

2

%block Supercell
1 1 2

%endblock Supercell

Magnetic

MaximumSCFiter 1000
SCFthreshold 0.00000001
SCFmixing 0.10
StartPulay 10000
ForceSCF

$ <your_path_to_scaleup_dir>/bin/scaleup.x < 1d-chain.s.oneatom.fdf > 1d-chain.s.oneatom.out

$ mv _tight_binding_FINAL.bands _BANDS_FINAL
$ mv _tight_binding_FINAL.ener _ENERGY_FINAL

$ python <your_path_to_scaleup_dir>/scripts/scaleup_utils.py -bands

$ python <your_path_to_scaleup_dir>/scripts/scaleup_utils.py -dos -width 0.0001

To account for all possible magnetic solutions
(ferro, antiferro and diamagnetic), we need at 
least a supercell made up from the repetion of 

two unit cells

Very stringent conditions required in the
convergence to avoid ending in a local 

metastable phase.
For the time being, we deactivate the Pulay

mixing



Linear chain of s-orbitals: How to introduce the
parameters of the hamiltonian to run SCALE-UP

2

<electron_hamiltonian_one>
<interaction_gm

orbital_1="1"
orbital_2="1"
hopa="0"
hopb="0"
hopc="0"
gamma="0.0000"
rx="0.000"
ry="0.000"
rz="0.000">

</interaction_gm>
<interaction_gm

orbital_1="1"
orbital_2="1"
hopa="0"
hopb="0"
hopc="-1"
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">

</interaction_gm>
<interaction_gm

orbital_1="1"
orbital_2="1"
hopa="0"
hopb="0"
hopc="1"
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">

</interaction_gm>
</electron_hamiltonian_one>

The one-electron
terms as before



The two-electron
terms refer for
the indexing to 

the one-electron
terms

The term gamma_1 is between a and a

The term gamma_2 is between a and a

So the term introduced here is
totally diagonal

And the Hubbard and Stoner
parameters are equal, as 
required to simulate our

Hubbard model

2

<electron_hamiltonian_one>
<interaction_gm

orbital_1="1"
orbital_2="1"
hopa="0"
hopb="0"
hopc="0"
gamma="0.0000"
rx="0.000"
ry="0.000"
rz="0.000">

</interaction_gm>
<interaction_gm

orbital_1="1"
orbital_2="1"
hopa="0"
hopb="0"
hopc="-1"
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">

</interaction_gm>
<interaction_gm

orbital_1="1"
orbital_2="1"
hopa="0"
hopb="0"
hopc="1"
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">

</interaction_gm>
</electron_hamiltonian_one>
<electron_hamiltonian_two>

<interaction_ee
gamma_1="1"
gamma_2="1"
hopa="0"
hopb="0"
hopc="0"
hubbard="0.5000"
stoner="0.5000">

</interaction_ee>
</electron_hamiltonian_two>

$ <your_path_to_scaleup_dir>/bin/scaleup.x < 1d-chain.s.oneatom.fdf > 1d-chain.s.oneatom.out

$ mv _tight_binding_FINAL.bands _BANDS_FINAL
$ mv _tight_binding_FINAL.ener _ENERGY_FINAL

$ python <your_path_to_scaleup_dir>/scripts/scaleup_utils.py -bands

$ python <your_path_to_scaleup_dir>/scripts/scaleup_utils.py -dos -width 0.0001

Linear chain of s-orbitals: How to introduce the
parameters of the hamiltonian to run SCALE-UP



Linear chain of s-orbitals: How to introduce the
occupation to run SCALE-UP

2

$ <your_path_to_scaleup_dir>/bin/scaleup.x < hubbard.fdf > hubbard.out

$ mv _hubbard_model_FINAL.ener _ENERGY_FINAL
$ mv _hubbard_model_FINAL.bands _BANDS_FINAL

$ python <your_path_to_scaleup_dir>/scripts/scaleup_utils.py -bands

<orbital
name="cond_s"
ref_occ_up="0.5000"
ref_occ_dn="0.5000"
ini_occ_up="1.0000"
ini_occ_dn="0.0000">

</orbital>

These numbers refer to the occupation matrix
that defines the reference electron density

[Eq. (18) of the manuscript]

In these case, a diamagnetic configuration with the same
number of electrons up and down per site

And the numbers for the density matrix written in files like _DENMATOLD refer to 
deformation occupation matrices, i.e. Changes with respect this reference occupation

matrix, Eq. (19) in the paper.

All the energies will be referred to the energy of this configuration,  



Linear chain of s-orbitals: How to introduce the
occupation to run SCALE-UP

2

$ <your_path_to_scaleup_dir>/bin/scaleup.x < hubbard.fdf > hubbard.out

$ mv _hubbard_model_FINAL.ener _ENERGY_FINAL
$ mv _hubbard_model_FINAL.bands _BANDS_FINAL

$ python <your_path_to_scaleup_dir>/scripts/scaleup_utils.py -bands

<orbital
name="cond_s"
ref_occ_up="0.5000"
ref_occ_dn="0.5000"
ini_occ_up="1.0000"
ini_occ_dn="0.0000">

</orbital>

These numbers refer to the occupation matrix
that defines the initial density
[Eq. (16) of the manuscript]

In these case, a completely polarized ferromagnetic configuration
where only the up component of the spin is polarized

Obviously, in this example we are running a half-filled system, 
with one electron per atom



Linear chain of s-orbitals:
How to run SCALE-UP

2

$ <your_path_to_scale_up_dir>/bin/scaleup.x < 1d_hubbard.fdf > 1d_hubbard.out

$ python <your_path_to_scale_up_dir>/scripts/scaleup_utils.py -bands -file _1d_hubbard_FINAL.bands

$ python <your_path_to_scale_up_dir>/scripts/scaleup_utils.py -dos -file _1d_hubbard_FINAL.ener



Linear chain of s-orbitals:
How to plot the band structure with SCALE-UP 2

$ <your_path_to_scale_up_dir>/bin/scaleup.x < 1d_hubbard.fdf > 1d_hubbard.out

$ python <your_path_to_scale_up_dir>/scripts/scaleup_utils.py -bands -file _1d_hubbard_FINAL.bands

$ python <your_path_to_scale_up_dir>/scripts/scaleup_utils.py -dos -file _1d_hubbard_FINAL.ener



Linear chain of s-orbitals:
How to plot the density of states with SCALE-UP

2

$ <your_path_to_scale_up_dir>/bin/scaleup.x < 1d_hubbard.fdf > 1d_hubbard.out

$ python <your_path_to_scale_up_dir>/scripts/scaleup_utils.py -bands -file _1d_hubbard_FINAL.bands

$ python <your_path_to_scale_up_dir>/scripts/scaleup_utils.py -dos -file _1d_hubbard_FINAL.ener



Increasing the value of U, we observe a phase 
transition to an antiferromagnetic state

Band structure Density of states

Although the initial state was ferromagnetic, the code finds
that the ground state is antiferromagnetic

To arrive to this conclusion, tight conditions on the SCF must be impossed



Phase diagram for the monoatomic chain with 
only one orbital per site

3.5 Transition diagrams 27

Fig. 3.8 Phase diagram for a simulation started with a totally polarized ferromagnetic linear chain.
D = diamagnetic, AFM = antiferromagnetic and FM TP = ferromagnetic totally polarized.

In Fig. 3.9 is represented the transition phase diagram when starting with an antiferromagnetic
linear chain.

Fig. 3.9 Phase diagram for a simulation started with a totally polarized antiferromagnetic linear
chain. D = diamagnetic, AFM = antiferromagnetic and FM TP = ferromagnetic totally polarized.

Finally, in Fig. 3.10 the transition phase diagram for a linear chain with a 1s orbital in each
lattice site, is mapped.

Something which is very interesting is that one linear chain never converges to a ferromagnetic
metallic system, but instead, it does to a half-spin metal. All the converged system labeled with
FM TP are systems where the Fermi level crosses only the majority spin electronic band, below the
bottom of the minority spin electronic band. That is, a Mott transition is never achieved for other
configuration different of nls = 0.5. As is widely known, this transition is typical of the half-filled
limit (Ref. [4]).

Marta Saiz de la Maza Cantero, 
trabajo fin de grado, UC, 2017



Phase diagram for the monoatomic chain with 
only one orbital per site

Marta Saiz de la Maza Cantero, 
trabajo fin de grado, UC, 2017

3.2 Shape of the electronic bands and density of states 21

(a) Sketch diamagnetic. (b) Bands diamagnetic. (c) DOS diamagnetic.

(d) Sketch ferromagnetic. (e) Bands ferromagnetic. (f) DOS ferromagnetic.
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Fig. 3.1 Plots of the sketch, bands and DOS for each configuration considered. The first row
belongs to a diamagnetic material, second row to a ferromagnetic material and third row to an
antiferromagnetic material.

Interestingly, this metallic
phase is never obtained as 

the ground state of our
simulations. 

The ferromagnetic phase is
stabilized only with large

values of         , with one spin 
band totally filled and the

other totally empty



Phase transition to a ferromagnetic metallic 
ground state in 3D

Marta Saiz de la Maza Cantero, 
trabajo fin de grado, UC, 2017

Bands DOS

2

$ <your_path_to_scale_up_dir>/bin/scaleup.x < < 3d_hubbard.fm.fdf > 3d_hubbard.fm.out

$ python <your_path_to_scale_up_dir>/scripts/scaleup_utils.py -bands -file _3d_hubbard_fm_FINAL.bands

$ python <your_path_to_scale_up_dir>/scripts/scaleup_utils.py -dos -file _3d_hubbard_fm_FINAL.ener -width 0.035



Question: what does happen in 2D for half filling, 
where there is a logarithmic divergence at the 

center of the band width



Eq. (71) of the
paper

The    in the Hubbard model modifies the values of 
the on-site terms of the Hamiltonian in real space 

If we remember than in our model

Then

is the diagonal component of the deformation density matrix: 
how many electrons are there at the Wannier function in 

excess or defect with respect the reference configuration



The    in the Hubbard model modifies the values of 
the on-site terms of the Hamiltonian in real space 

Reference configuration:
Diamagnetic

Same population for spin up and 
spin down on every atom



The    in the Hubbard model modifies the values of 
the on-site terms of the Hamiltonian in real space 

Initial configuration:
Ferromagnetic

Only spin up electrons. 
Spin down channel is empty

Diagonal terms of the deformation charge densities



The    in the Hubbard model modifies the values of 
the on-site terms of the Hamiltonian in real space 

Initial configuration:
Ferromagnetic

Only spin up electrons. 
Spin down channel is empty

Change in the on-site term of 
the real space Hamiltonian



The    in the Hubbard model modifies the values of 
the on-site terms of the Hamiltonian in real space 


