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Conditions that the simplified method should fulfill

The method should be simple enough to allow for its application to
large systems with a reasonable computational effort

The approximations introduced should not be that severe that they modify
the physical forces that determine structural and dynamical properties

The approximated wave function should be as unbiased as possible,
avoiding the explicit introduction of pre-existent qualitative ideas

The method should account for all chemically active electrons

Jorge Kohanoff,
Electronic Structure Calculations for Solids and Molecules (Theory and Computational Methods)
Cambridge University Press, 2006




The tight binding is a method to describe the
electronic band structure of solids and molecules

Provides a faithful representation of Complementary to the nearly free
systems where the electron are electron picture, that is a reasonably
localized in chemical bonds of good approximation of the electronic
different degrees of covalency structure of simple metals

Valence electrons

lons Bonds
lons

r’e

Covalent

Jorge Kohanoff,
Electronic Structure Calculations for Solids and Molecules (Theory and Computational Methods)
Cambridge University Press, 2006




The tight binding is a method to describe the
electronic band structure of solids and molecules

Starting point: in a first approximation, the electrons are localized in a
single atom, but they have the possibility to jump to neighboring atoms.

Potential of a free atom

Total lattice potential:

Obtained by summing the potential
of a free atom

Perturbation potential around one
lattice site:

Difference of the total lattice potential
and the atomic potential at that site.
The atomic potential around that site is
much larger than the one due to the rest
of the atoms

Potential energy

H. Ibach and H. Luth,
Solid State Physics (An Introduction to Principles of Materials Science)
Springer, 2009




The tight binding is a method to describe the
electronic band structure of solids and molecules

TB methods range from very basic empirical models to the more

sophisticated ab initio schemes, where the Hamiltonian matrix is derived
from density functional theory

It should be possible to derive the methodology from a precise starting

point (Hartree-Fock or Kohn-Sham) by means of a series of more or less
controlled approximations

Jorge Kohanoff,
Electronic Structure Calculations for Solids and Molecules (Theory and Computational Methods)
Cambridge University Press, 2006




Starting point: the solutions of the Schrodinger

equation for the isolated atoms that form the crystal

Assumption of the tight-binding model: A
Close to each lattice point, the crystal Hamiltonian
can be approximated by the Hamiltonian of a single atom*,,

A

Hat(F_ EI)(bu(F_ él) — EM¢M<F_ EI)

H..(7 — R;) is the Hamiltonian for a free atom at the lattice position R;

¢,(F— E1) is the wavefunction for an electron at energy level E,u

1s .
The bound levels of 7, are well localized.

G ¢, () are very small a few lattice spacing away

The set of functions %(f) , each associated with an atom in the unit cell at position }?I
will form a basis of localized functions




Starting point: the solutions of the Schrodinger

equation for the isolated atoms that form the crystal

Assumption of the tight-binding model: A
Close to each attice point, the crystal Hamiltonian +
can be approximated by the Hamiltonian of a single atom*,,

A

Hat(F_ él>¢u(F_ él) — Euqbu(F_ EI)

H..(7 — R;) is the Hamiltonian for a free atom at the lattice position R;

¢,(F— E1) is the wavefunction for an electron at energy level Eﬂ

In principle, Iu might run over all the atomic orbitals of a given atom:(1s, 2s,3d, . ..




We seek solutions for the Schrodinger equation
of the entire periodic system

We are now faced with the task of solving the time-independent Schrodinger equation for a
single electron under the assumption that the potentiall” (i) is periodic

R(7) = |5V + VI 6) = Ew()

o I where T represents an arbitrary translation of
V(r) =V(r+T) the three-dimensional periodic lattice

Since the potential is periodic, the solution of the one-electron Schrodinger
equation has to comply with the Bloch theorem,
i.e. they can be written as the product of a plane wave times a function that
has the periodicity of the lattice

i (7 + T) = 1, 1(7)

The eigenfunctions are characterized by two quantum numbers:
- A discrete index 71 : the band index
- A continuum wave vector j




Ansatz: a good approximation for the Bloch eigenfunctions is
provided by a linear combination of the atomic orbitals

T, =(7) = En (k)2 =(7)

where wnE(F) are the Bloch eigenfunctions that should obey the Bloch theorem

§(F) = e (T T) =,z (M)

Due to this expansion, in many textbooks the tight-binding approach is
also known as the linear combination of atomic orbitals (LCAO) approach

The problem has translated on how to compute:
- the coefficients of the expansion ¢, (k)
- the discrete set of eigenvalues £, ()




Construction of a basis set that satisfies
Bloch theorem

The same orbital ¢,(7) is defined for every atom of the same type in our
periodically repeated material

1s 1s 1s 1s...
=5 5

(n-1)a na (n+1)dn+2)a

Since the eigenfunctions must comply with the Bloch theorem,

it is sensible to define a basis that comply also with the Bloch theorem.

For every given £ -point in the first Brillouin zone, we define

—

(M) = Az Z e* T (F—7, —1T)
T

Exercise 1: Proof that these basis functions verify the Bloch theorem

Exercise 2: Proof that for orthogonal atomic orbitals, then the normalization factor 4 ; =

L
VN




Schrodinger equation in a basis of
Bloch-like atomic orbitals

Replace the expansion of the eigenfunction

Yoi(F) ~ @ (P) = cun(k) 7 (7)

In the one-particle Schrodinger equation

(7)

Multiply at the left by ¢ .(7) and integrate over all space

> i) [

1 all space all space




Matrix elements of the Hamiltonian in a basis of
Bloch-like atomic orbitals

> k) [ B Y em() |

1 all space r all space

This expression can be rewritten as

S BV H(B) = Ea(B) S cyn(R) S, (F)

s




Matrix elements of the Hamiltonian in a basis of
Bloch-like atomic orbitals

The secular equation takes the form

H,,(k) = / b*
all space all space

After some bookeping, we can arrive to the conclusion that the matrix
elements of the Hamiltonian and Overlap matrices in k space can be
computed from the sums of the Hamiltonian and Overlap matrices in real
space, modulated by a phase (take it as an exercise)

H, L) — , i H L)) — eiE'fHV T Since the atomic orbitals are
M( ) <¢ ( )‘ |¢M( )> Z M( ) localized, is expected that

H,,(T) @9 §,,(T)

- become negligible for large
T distances |ﬂ

S,k




The secular equation in matricial form

The secular equation takes the form

> [Hon ) = Ea(8)S,(8) | ey (F) = 0

ol
Or in matricial notation

N x N N x 1 N x N N x 1

Where )\ is the number of atomic orbitals in the unit cell

This is a generalized eigenvalue problem.




The secular equation in matricial form

£)| cun () = 0

W
In matricial notation

N x 1

For every [ -point:

1. Compute the Hamiltonian and Overlap matrices ink -space,
from the Hamiltonian and Overlap matrix elements in real space

_) E ik T

2. Solve the generalized eigenvalue problem (diagonalize the Hamiltonian)

As a result, there are V eigenvalues (bands), labelled by 7 , andN -eigenvectors




... Now let us practice with some simple examples:
analytical calculations and SCALE-uUP simulations

1-D Monoatomic linear chain with only s-orbitals. One atom in the unit cell

1-D Monoatomic linear chain with only s-orbitals. Two atoms in the unit cell

2-D Monoatomic plane with only s-orbitals

3-D Monoatomic cube with only s-orbitals

2-D CuO, plane
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Solving the secular equation in a simple case:
the linear chain of atoms with only s-orbitals

unit cell

Only one atomic orbital in the unit cell ( V — ] ). Let us denote this orbital (s)= 7

The Hamiltonian and Overlap matrices are just simple real numbers

First approximation: range of interactions

—

H, (T =0) =«




Solving the secular equation in a simple case:
the linear chain of atoms with only s-orbitals

unit cell

Only one atomic orbital in the unit cell ( V — ] ). Let us denote this orbital (s)= 7

The Hamiltonian and Overlap matrices are just simple real numbers

Second approximation: orthogonal orbitals 5
If the basis set of atomic orbitals is sufficiently localized, then ¢,( — R;) only has
significant values around the atom where it is centered.
To a first approximation, we can retain only the overlap of one orbital with itself,
and neglect all the rest of the overlap integrals

Su,u(j—;) — 51/u5'f0 VM E Z GZk TSVM f Z sz T(SVM(STO = 5’/#
T

The overlap matrix is diagonal in this approximation.
If we have only one orbitals in the unit cell, the overlap matrix is 1 for all L




Solving the secular equation in a simple case:
the linear chain of atoms with only s-orbitals

a
<€ >
unit cell

The secular equation for this system is, therefore
la + 2y cos(ka) — E(k)]c(k) =0

Therefore, for a non trivial solution, with c(k) # 0

E(k) = a+ 2vycos(ka)




Linear chain of s-orbitals: Input for SCALE-UP

©-© © ©

<electron_hamiltonian_one>
<interaction_gm
orbital_1="1"
orbital_2="1"
hopa=l|0l| -
hopb=lloll
hopc="0" /Y/J,U'(_T)
gamma="0.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
<interaction_gm
orbital_1="1"
orbital_2="1"
hopa=ll0|l
hopb=l|0ll
hOpC="—1 n
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
<interaction_gm
orbital_1="1"
orbital_2="1"
hopa="0ll
hopb=l|0l|
hopc=ll 1 n
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
</electron_hamiltonian_one>




The linear chain of atoms with only s-orbitals
Computing the band structure with SCALE-UP

In the input file, select the high-symmetry lines in the Brilllouin zone

%block band_path -
i oek band-pe One symmetry line

30 0.0 0.0 -0.5 0.0 0.0 0.5 30 points between (0,0,- n/a) and (0,0, n/a)
%endblock band_path

Run SCALE-UP

$ <your_path_to_scaleup_dir>/bin/scaleup.x < ld-chain.s.oneatom.fdf > 1d-chain.s.oneatom.out

To plot the band structure, you can use some of the utilities

python <your_path_to_scale_up_dir>/scripts/scaleup_utils.py -bands -file _1d_oneat_tight_binding FINAL.bands

0.060000 0.439804




Interpreting the band structure of the
linear chain of atoms with only s-orbitals

k = (1/6)(w/a)

A =2a
k =r/a




Interpreting the band structure of the
linear chain of atoms with only s-orbitals

The hopping parameter or transfer integral 7y
give a direct measure of the width in energy of a band (the bandwidth)

The smaller the
hopping parameter 7,
the narrower the bands

In the limit casey — 0,
i.e. In the case of non-
interacting orbitals, the
bands would be flat
straight lines




Relationship between the hopping parameter and
the effective mass

Energy of the one-dimensional tight-binding band

For a minimum at [’ then
E(k) = a+ 27 cos(ka)

v < 0
Close to the minimum we can use the approximation for small k¢
(ka)

2

Replacing in the previous expression

E(k) = o+ 2y — vk*a?

cos(ka) =~ 1 —

Energy (eV)

Close to the minima, the bands are approximately parabolic.
Close to these points, the electrons can be treated as if they [l
were free, but with an effective mass m*

General expression In particular for one-dimensional bands
2
S

he - - 2
E(F) ~ Bo + 5 —(k — ko)’ &

, 2va?
k, define the band extremum




Relationship between the hopping parameter and
the effective mass

Carriers close to the bottom of a tight-binding band have effective masses
which are inversely proportional to the transfer integrals

hQ
- 27va?

*

N, =

The effective mass parametrises
the ease with which an electron
can be accelerated

1
1
|
1
I
|
|
1
I
|
I
1
I
|
1
I
|
I
1
|
|
I
I
|
|
1
|
|

Small transfer integrals Large transfer integrals

4 4

Narrow band-widths Large band-widths

4 Y

Heavy effective masses Light effective masses

\ 4

It is hard to move electrons around It is easy to move electrons around




The linear chain of atoms with only s-orbitals
Computing the density of states with SCALE-UP

In the input file, select the how many E-points to include in the sampling of the
Brillouin zone

/iblock k-sampling
1 1 500
hendblock k-sampling

Run SCALE-UP

$ <your_path_to_scaleup_dir>/bin/scaleup.x < ld-chain.s.oneatom.fdf > 1d-chain.s.oneatom.out

To plot the density of states (DOS), you can use some of the utilities

python <your_path_to_scale_up_dir>/scripts/scaleup_utils.py -dos -file _1d_oneat_tight_binding FINAL.ener

0.12

0.10




The linear chain of atoms with only s-orbitals
Computing the density of states with SCALE-UP

Convergence with respect the number of k -points

In the fdf input

! Number of points in the reciprocal space ' Number of points in the reciprocal space

%iblock k-sampling
112
iendblock k-sampling

Reciprocal lattice
Sampling: 0 0 2
Number of k-points: 3
Point Kx Ky
1 0.000 0.000
2 0.000 0.000
3 0.000 0.000

o o o I
N w S 5

DOS (arb. uni.)

o
=

o
lo

=

e}

. 0.0 .
Energy (eV)

Jblock k-sampling
1 1 1000
hendblock k-sampling

In the output file

Reciprocal lattice
Sampling: O 0 1000
Number of k-points: 1999

Point Kx Ky
1 0.000 0.000
2 0.000 0.000

o e o o
= = N N
o & =) u

DOS (arb. uni.)

o
o
a

o
o
o

-1.5 -1.0 -0.5 0.0 0.5
Energy (eV)

1.0

15




... Now let us practice with some simple examples:
analytical calculations and SCALE-uUP simulations

1-D Monoatomic linear chain with only s-orbitals. One atom in the unit cell

1-D Monoatomic linear chain with only s-orbitals. Two atoms in the unit cell

2-D Monoatomic plane with only s-orbitals

3-D Monoatomic cube with only s-orbitals

2-D CuO, plane




Solving the secular equation in a simple case:

the monoatomic linear chain with only s-orbitals
2a

<€ >
‘LQ'L"}D‘L““Q

unit cell

Two atomic orbitals in the unit cell ( Y = 2 ). Let us denote these orbitals (s)= ., v

The Hamiltonian and Overlap are (2 x 2) matrices

Let us compute the diagonal terms of the Hamiltonian,
under the assumption of nearest neighbour interaction

The next orbital .l is not a
nearest neighbour, so there is
only one term in the sum




Solving the secular equation in a simple case:

the monoatomic linear chain with only s-orbitals
2a

';D"VQ'

unit cell

Two atomic orbitals in the unit cell ( Y = 2 ). Let us denote these orbitals (s)= ., v

The Hamiltonian and Overlap are (2 x 2) matrices

Let us compute the off-diagonal terms of the Hamiltonian,
under the assumption of nearest neighbour interaction

—

[ = Hluy(T = 0) O e—iEQaHﬂy(f = —26) — ’y -+ 6_7:];26/')/ — ry (1 L e-iE-Qﬁ)

a
<€ >

T =0
© .00 .0 ©

unit cell




Solving the secular equation in a simple case:

the monoatomic linear chain with only s-orbitals
2a

';D"VQ'

unit cell

Two atomic orbitals in the unit cell ( Y = 2 ). Let us denote these orbitals (s)= ., v

The Hamiltonian and Overlap are (2 x 2) matrices

Let us compute the off-diagonal terms of the Hamiltonian,
under the assumption of nearest neighbour interaction

— —

(T) = H,,(T = 0) + e*2H, (T = 2d) = v + "2y = (1 N eiE-m)
2a

<€ >
[=0
©.0.0.©

unit cell




Solving the secular equation in a simple case:

the monoatomic linear chain with only s-orbitals
2a

<€ >
‘;O"V"}"'V‘"'Q

unit cell

Two atomic orbitals in the unit cell ( Y = 2 ). Let us denote these orbitals (s)= ., v

The Hamiltonian and Overlap are (2 x 2) matrices

Let us compute the overlap matrix
under the assumption that one orbital only overlaps with itself

Sup (7:) — 5vu5f

The overlap matrix is diagonal for all % in this approximation.




Solving the secular equation in a simple case:

the monoatomic linear chain with only s-orbitals
2a

<€ >
©.0.0 000 ©

unit cell

The secular equation to be solved for each / -point is

o V(1 + e~2ka) k) N L w10 e ()
( TEE L B )( cunlF) ) -5 (o 1) E

And the only non-trivial solutions are obtained from the solution of




Solving the secular equation in a simple case:
the monoatomic linear chain with only s-orbitals

(F) — 2B, (F) + a2 — 27 (1 + cos(2F - a)) — 0

200 + \/4042 —4 [042 22 (1 + cos(2k - a))} 200 + \/872 (1 + cos(2k - 6))

E, = =
( 9 2

2% + 27\/2 (1 + cos(2F - 5))
- 2

:oziv\/Q x 2cos?(k - @) = a £ 2vycos(k - @)




Solving the secular equation in a simple case:

the monoatomic linear chain with only s-orbitals
2a

<€ >
©.0.0 000 ©

unit cell

And the only non-trivial solutions are obtained from the solution of

- 2 cos(k - @)

For every j point we have two solutions,
but the unit cell where we have to sample has been reduced by half

One atom/unit cell ( Two atoms/unit cell (




Solving the secular equation in a simple case:

the monoatomic linear chain with only s-orbitals
2a

<€ >
©.0.0 000 ©

unit cell

And the only non-trivial solutions are obtained from the solution of

- 2 cos(k - @)

For every j point we have two solutions,
but the unit cell where we have to sample has been reduced by half

One atom/unit cell ( Two atoms/unit cell (




Solving the secular equation in a simple case:
the monoatomic linear chain with only s-orbitals

Two atoms per unit cell

$ <your_path_to_scale_up_dir>/bin/scaleup.x < 1d-chain.s.twoatoms.fdf > 1d-chain.s.twoatoms.out
$ python <your_path_to_scale_up_dir>/scripts/scaleup_utils.py -bands -file _1d_twoat_tb_FINAL.bands

$ python <your_path_to_scale_up_dir>/scripts/scaleup_utils.py -dos -file _1d_twoat_tb_FINAL.ener

2

0
Energy (eV)




... Now let us practice with some simple examples:
analytical calculations and SCALE-uUP simulations

1-D Monoatomic linear chain with only s-orbitals. One atom in the unit cell

1-D Monoatomic linear chain with only s-orbitals. Two atoms in the unit cell

2-D Monoatomic plane with only s-orbitals

3-D Monoatomic cube with only s-orbitals

2-D CuO, plane




Solving the secular equation in a simple case:
the monoatomic square plane with only s-orbitals

We keep the previous approximations

Only one atomic orbital in the unit cell ( Y — ] ). Let us denote this orbital (s)= v

The Hamiltonian and Overlap matrices are just simple real numbers
Hamiltonian matrix elements in real space

—

- Only H,,(T'=0)=aqa

- And H, (T = +d,) = H,,(T = +d,) = v




Solving the secular equation in a simple case:
the monoatomic square plane with only s-orbitals

— - .
— ) - ) .

= Hw(f =0) + 6%-635]{“”(7? = by) + €_ik'%Huu(f = —d,) + GZk'ayHuAL(f = ay) + e~ ™, (
= a + 2 [cos(kya,) + cos(kyay)]

Suu(lg) =1




Solving the secular equation in a simple case:
the monoatomic square plane with only s-orbitals

The secular equation for this system is, therefore
[Oz + 2 [cos(kzay) + cos(kyay)| — E(lg)} cﬂ(/;) =3

Therefore, for a non trivial solution, with c(k) # 0

E(k) = a + 27 [cos(kyaz) + cos(kyay)]




Solving the secular equation in a simple case:
the monoatomic square plane with only s-orbitals

%block Supercell
111
%endblock Supercell

%block k-sampling
50 50 1
iendblock k-sampling

%sblock band_path

5
5
0
t

0.
0.
0.
-Pb

%endblock ban ath

<unit_cell units="bohrradius">
5.6700 0.0000 0.0000
0.0000 5.6700 0.0000
0.0000 0.0000 7.5600
</unit_cell>




Solving the secular equation in a simple case:
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%block Supercell
111
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%block k-sampling
50 50 1
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0
t
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Introducing the tight-binding param in a simple case
the monoatomic square plane with only s-orbitals

%block Supercell
111
%endblock Supercell

%block k-sampling
50 50 1
iendblock k-sampling

%block band_path

5
5
0
t

0.
0.
0.
-Pb

%endblock ban ath

<unit_cell units="bohrradius">
5.6700 0.0000 0.0000
0.0000 5.6700 0.0000
0.0000 0.0000 7.5600
</unit_cell>

We have to sample now a 2D
Brillouin zone




Solving the secular equation in a simple case:
the monoatomic square plane with only s-orbitals

%block Supercell
111
%endblock Supercell

%block k-sampling
50 50 1
iendblock k-sampling

%block band_path

5
5
0
t

0.
0.
0.
-b

%endblock ban ath

<unit_cell units="bohrradius">
5.6700 0.0000 0.0000
0.0000 5.6700 0.0000
0.0000 0.0000 7.5600
</unit_cell>

New path in the high-symmetry
BZ to plot the bands

' - M—-X —1T




Introducing the tight-binding param in a simple case
the monoatomic square plane with only s-orbitals

<electron_hamiltonian_one>
<interaction_gm
orbital_1="1"
orbital_2="1"
hopa="0"
hopb="0"
hopc="0"
gamma="0.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
<interaction_gm
orbital_1="1"
orbital_2="1"
hopa="-1"
hopb="0"
hopc="0"
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
<interaction_gm
orbital_1="1"

orbital_2="1"

hopa="1"
hopb="0"
- hopc=l|oll
Unlt Ce" gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
<interaction_gm
orbital_1="1"
orbital_2="1"
hopa="0"
hopb="-1"
hopc="0"
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
<interaction_gm
orbital_1="1"
orbital_2="1"
hOpa="O"
hopb="1"
hopc="0"
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
</electron_hamiltonian_one>
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Introducing the tight-binding param in a simple case
the monoatomic square plane with only s-orbitals

<electron_hamiltonian_one>
<interaction_gm
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hopb="0"
hopc="0"
gamma="0.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
<interaction_gm
orbital_1="1"
orbital_2="1"
hopa="-1"
hopb="0"
hopc="0"
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
<interaction_gm
orbital_1="1"

orbital_2="1"

hopa="1"
hopb="0"
= hopc="0"
Unit cell gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
<interaction_gm
orbital_1="1"
orbital_2="1"
hopa="0"
hopb="-1"
hopc="0"
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
<interaction_gm
orbital_1="1"
orbital_2="1"
hOpa="O"
hopb="1"
hopc="0"
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
</electron_hamiltonian_one>




Introducing the tight-binding param in a simple case
the monoatomic square plane with only s-orbitals

<electron_hamiltonian_one>
<interaction_gm
orbital_1="1"
orbital_2="1"
hopa="0"
hopb="0"
hopc="0"
gamma="0.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
<interaction_gm
orbital_1="1"
orbital_2="1"
hopa="-1"
hopb="0"
hopc="0"
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
<interaction_gm
orbital_1="1"
orbital_2="1"
hopa="1"
hopb="0"
= hopc="0"
Unit cell genma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
<interaction_gm
orbital_1="1"
orbital_2="1"
hopa="0"
hopb="-1"
hopc="0"
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0. 000"

<1nteract10n_gm
orbital_1="1"
orbital_2="1"
hopa= n O n
hopb="1"
hopc="0"
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">

</interaction_gm>

</electron_hamiltonian_one>




Introducing the tight-binding param in a simple case
the monoatomic square plane with only s-orbitals

<electron_hamiltonian_one>
<interaction_gm
orbital_1="1"
orbital_2="1"
hopa="0"
hopb="0"
hopc="0"
gamma="0.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
<interaction_gm
orbital_1="1"
orbital_2="1"
hopa="-1"
hopb="0"
hopc="0"
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
<interaction_gm
orbital_1="1"

orbital_2="1"

hopa="1"
hopb="0"
- hOPC="o"
Unlt Ce" gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
<interaction_gm
orbital_1="1"
orbital_2="1"
hopa="0"
hopb="-1"
hopc="0"
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
<interaction_gm
orbital_1="1"
orbital_2="1"
hOpa="O"
hopb="1"
hopc="0"
gamma="2.0000"
rx="0.000"
ry="0.000"
rz="0.000">
</interaction_gm>
</electron_hamiltonian_one>




Running the scale-up code for a simple case
the monoatomic square plane with only s-orbitals

<your_path_to_scaleup_dir>/bin/scaleup.x < 2d-plane.s.fdf > 2d-plane.s.out




Plotting the band structure in a simple case:

the monoatomic square plane with only s-orbitals

python <your_path_to_scale_up_dir>/scripts/scaleup_utils.py -bands -file _2d_tight_binding_ FINAL.bands

Change in
bandwidth

_ 1 I 1
QOO%OOOOO 0.29320270 0.58640540 1.00105663

' =M — X —1




Plotting the density of states in a simple case:
the monoatomic square plane with only s-orbitals

python <your_path_to_scale_up_dir>/scripts/scaleup_utils.py -dos -file _2d_tight_binding_ FINAL.ener

Energy (eV)




... Now let us practice with some simple examples:
analytical calculations and SCALE-uUP simulations

1-D Monoatomic linear chain with only s-orbitals. One atom in the unit cell

1-D Monoatomic linear chain with only s-orbitals. Two atoms in the unit cell

2-D Monoatomic plane with only s-orbitals

3-D Monoatomic cube with only s-orbitals

2-D CuO, plane




Repeat the exercise for
the monoatomic cube with only s-orbitals

$ <your_path_to_scale_up_dir>/bin/scaleup.x < 3d-cube.s.fdf > 3d-cube.s.out
python <your_path_to_scale_up_dir>/scripts/scaleup_utils.py -bands -file _3d_tight_binding_ FINAL.bands

python <your_path_to_scale_up_dir>/scripts/scaleup_utils.py -dos -file _3d_tight_binding FINAL.ener -width 0.045

Band structure Density Of States

5

_ I I I I
0.08800000 0.29320270 0.58640540 0.87960810 1.38745007 Energy (eV)

Change in bandwidth to 2 x dimension x (27)



... Now let us practice with some simple examples:
analytical calculations and SCALE-uUP simulations

1-D Monoatomic linear chain with only s-orbitals. One atom in the unit cell

1-D Monoatomic linear chain with only s-orbitals. Two atoms in the unit cell

2-D Monoatomic plane with only s-orbitals

3-D Monoatomic cube with only s-orbitals

2-D CuO, plane




Square lattice and CuO, planes

These kind of planes appear in the bilayers of high-T, superconductors,
such as YBa,Cu;0;,

Extensive calculations have shown that the primary electronic states at the
Fermi energy are a single band formed from Cu 4 and O p orbitals

The band has the same symmetry as d,, ,, states centered on each Cu

Problem proposed in Chapter 14 of the book by Richard M. Martin
Electronic Structure: Basic Theory and Practical Methods
Cambridge University Press




Square lattice and CuO, planes:
setting up the unit cell

To describe the bands of interest, we need to consider three atoms
(one Cooper and two Oxygens) in a square simulation box

slab The material is defined as a slab.
Yblock LatticeParameters It means that the third lattice vectors will
4.0 4.0 4.0 90. 90. 90. be automatically increased, independently
Y%endblock LatticeParameters - .

of the value introduced in the

V{biofk Supercell LatticeParameters block

%endblock Supercell ) )
The unit cell is a square of 4.00 A of length
Types_of _materials 1

Material_1_Number_of_Atoms 3

“block Material_1_Atoms No supercell is made from periodic

1 cooper 0.0 0.0 _g s .
5 oxigen 0.5 0.0 repetitions of the unit cell
0.5

3 oxigen 0.0
Y%endblock Material_1_Atoms

0.0
0.0
0.0
m

In the unit cell, there is only one kind of
material, with three atoms

There are three atoms in the unit cell: Next threee numbers:
Cu at the origin Atomic mass
One O at the center of the lattice vector along x Charge
One O at the center of the lattice vector along y Number of orbitals considered




Square lattice and CuO, planes:

setting up the basis set

The most important atomic orbitals that will play a role in the basis set will
be the Cu d,, ,, and the O p-orbitals that hybridize with them
(the p, of the first O and the p, of the second O)

Yblock Material_1_Orbitals For each atomic orbital within the material, we define
11 ax2y2 1. 1. The atom to which that orbital belongs

?, 1 §§ ;: 3; The index of the orbital within the atom

“%endblock Material_1_Orbitals The label that identifies the orbital
The reference occupation

hblock epsilon_inf The initial occupation

10000.0 0.0 0.0
0.0 10000.0 0.0
0.0 0.0 10000.0

%hendblock epsilon_inf




Occupation of the Cu atom

. . There are 9 electrons in
Periodic Table of Elements the d-shell.
) o w w Due to crystal field

H S splitting, the energy

i Salid Metals ||Nonmetalsl - .
t [gluaus order of the d-orbitals is

9.012182 E Gas 10.811
i 12 3 Unknown

13
Mg Al
Magnesium

R & i 15 TR P i W square plunar crystal field splitting

Caloium ‘Scandium i Chromium Manganese Cobait i Copper Zinc Galium
20078 X 519891 ¥ ¥ Y . 6538 89723

38 242 2 3 248 2 49
:Sr i P : Mo % g ; g ¢tAg 3 Cd zIn

Strontium Zirconium Molybdenum  Technetium uthenium Rhodium alladium Cadmium Indium
8762 f X £ 114818

T 7 2 2 2 : 2 O i
- - - -
Ba =W H Tl
Barium 2 rantalum Tungsten Rbenium 2 2 2 Piatinum Gold uugy 2 Thalium
137.327 .£ 183.84 X . 200.59 204.3823
88 i 106 : : : : : 113
- /
Ra fss-103 Sg |t

Rasom 2 Ruterforim Seaborgium 3 B B Dsmstim. Ununbium
(228) (258) (288 (284)

Lanthanoids
‘Boron.
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uopsuel ]

Actinoids

SeeW IRy
s[ejew yyes
S[ejew 1004
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&
8
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PriT

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.
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59 60 : 61 62 63 64 65 66 67 69 71
:Pr % Nd 2z Pm Sm Eu Gd Tb = Dy Ho Tm = Lu
2 Neodymium 2 Promethium ‘Samarium Europium Gadolinium Terbium 2 Holmium Thulium Lutetium

vosres 12 () 15038 151384 15725 158.32805 4y To4.3032 : e85t 1Teoees

91 i 02 i o3 % % % %9 101
4 ’

Pa 3 U z Np Pu Am Cm Es Md

Protactinium 3 Uranium 3 Neptunium Plutonium Americium Curium Einsteinium Vendekvim 3

231.03588 238.02891 (@30 (244) 243 (241 (252) (258)

Electronic configuration for neutral Cu: There is one unpaired
[Ar] 34'° 451 electron in the dx?-y?

If it is oxidized, the electronic configuration for Cu?* is:
[Ar] 3d° 4s°




Occupation of the O atom

iodi All the p-orbitals of O
Periodic Table of Elements oec]élf;ieldav:itcl)'lZ i

. electrons

2 10 1 12 13 14 15 16 17

' Atomic # 2

He

Metals Nonmetal P

10
Ne
Neon

9

F

Fluorine

189984022 | 201757
17

(o]

Chiorine.

Is
z 5
B

13
Al

-
B
24 25 3 3 H 3 3
Cr ' Mn g Ga

Chromium Manganese Cobait i Copper Galium
519891 54938045 ¥ Y . ¥ a2z

b =
Lanthanoids 8
3

Actinoids 18

' Ar

Argon

35.453 39.948
35 36

Br Kr

Bromine Keypton
79.504 8758

5 154
1 Xe
lodine. Xenon
126.90447 131.293

s[ew Ieyy
s[ejew yyes
au|
S[ejew 1004
saseb 9|qo]

Unknown
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: Mo Tc ¢ # ] 2 ¢ In 8 Sb

Molybdenum  Technetium uthenium Rhodium alladium s Cadmium Indium T Antimony
£ (7.5072) 114818 X 121.760

374 75 3 81 83 385 86
5

W Re Tl Bi Po At Rn
Caesium Tungsten Rhenium Platinum Gold Mercury 2| Thalium Bismuth Polonium Astatine Radon
132.3054519 az7 ? 18384 188.207 1 X Y 2042823 E 208.98040 (@08.3824) @20178)
87 106 107 3 113 115 116 118

H
7 Fr Sg Bh z U 2 Uup g Uuh

Francium Rutreiorim. Seaborgium 3 Bohrium B Ununbium Ununtrium Unrpertum 8 Ununhexium
(223 (28) (254) @849 (228) (@)

® EE;HG gigﬂﬁ ggma ;;o"

wiHEan
PET I
PriT

~aslEan
niskEEmn
~E8MEan
Pt

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

62 63 65 1 [
Pr : 3 Sm Eu Tb Dy Lu

Passymim 2 N Samarium Europium 2 Terbium Dysprosium Lutetium
140.90785 150,38 151,984 158.92535 162500 ‘ 174.5088
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Pu Am Bk

Protactinium rani Plutonium Americium
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T
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Electronic configuration for neutral O:
[He] 252 2p4

If it is reduced, the electronic configuration for O% is:
[He] 252 2,5




Square lattice and CuO, planes:
setting up the self-consistency and the band
structure calculation

%Zé"iﬁ lli—sa.mpling Define the fineness of the Monkhorst-Pack grid

hendblock k-sampling
Totalcharge 0.0 Define the total charge in the supercell

Geometrymode single-point

MaximumSCFiter 100 . ;
SCFthreshold 0.0001 Define the geometry mode:

SCFmixing : Single point: solve for the SCF of the electrons.

o Do not perform atomic displacements
.sblock band_path

Define the Maximum number of SCF steps
allowed, the convergence criterion, and the
mixing between two consecutive density matrix
to speed up the self-consistency

Once SCF is achieved, define the path to plot the bands:
- 30 points betweenI" and M
- 30 points between M and X
- 30 points between X and I




Square lattice and CuO, planes:
setting up the interactions

First, set up the on-site interactions

! Define the TB interactions
in the Cu02 plane,
including the interactions between the
! Cu dx2-y2 orbital and the 0 px and py orbitals!

Number_of_interactions 11

%block Interaction_1

materials 1 1 ! Interaction within material 1

atoms 1 1 ! Interaction within atom 1

orbitals 1 1 ! It is the diagonal element

hop 0 0 0 ! Diagonal element

gamma 2.0000 ! Related to the band’s center of mass
J%endblock Interaction_1

%block Interaction_2

materials 1 1 ! Interaction within material 1

atoms 2 2 ! Interaction within atom 2

orbitals 1 1 ! It is the diagonal element

hop 0 0 0 ! Diagonal element

gamma -2.0000 ! Related to the band’s center of mass
J%endblock Interaction_2

%block Interaction_3

materials 1 1 ! Interaction within material 1
atoms 3 3 ! Interaction within atom 3
orbitals 1 1 ! It is the diagonal element

hop 0 00 ! Interaction with the atom on top
gamma -2.0000 ! Related to the band width
J%endblock Interaction_3




Square lattice and CuO, planes:
setting up the interactions

First, set up the on-site interactions

! Define the TB interactions
in the Cu02 plane,
including the interactions between the
! Cu dx2-y2 orbital and the 0 px and py orbitals!

Number_of_interactions 11

%block Interaction_1

materials 1 1 ! Interaction within material 1

atoms 1 1 ! Interaction within atom 1

orbitals 1 1 ! It is the diagonal element

hop 0 0 0 ! Diagonal element

gamma 2.0000 ! Related to the band’s center of mass
J%endblock Interaction_1

%block Interaction_2

materials 1 1 ! Interaction within material 1

atoms 2 2 ! Interaction within atom 2

orbitals 1 1 ! It is the diagonal element

hop 0 0 0 ! Diagonal element

gamma -2.0000 ! Related to the band’s center of mass
J%endblock Interaction_2

%block Interaction_3

materials 1 1 ! Interaction within material 1
atoms 3 3 ! Interaction within atom 3
orbitals 1 1 ! It is the diagonal element

hop 0 00 ! Interaction with the atom on top
gamma -2.0000 ! Related to the band width
J%endblock Interaction_3




Supplementary information




Empirical tight-binding

If the atoms are sufficiently far appart, electrons in every atom will have the same
on-site value of the energy, €¢ .
This situation can be represented by a model Hamiltonian of the form

Ho =0 ) |D){I]

When the atoms are brought together, we have to conside the possibility of the
electrons jumping from one atom to any of its neighbours

Hrr :502]1><I\+t22\1><<]|
I T Y~

In a model situation, ./ runs only
over the nearest neighbour of /

Hopping or hopping integral




The hopping integral

Tight-binding Hamiltonian for a single electron in a molecule

and propose a linear combination of atomic orbitals for the TB wave function
o(7) = Cys(F = Ry)
y

where the ¢ ; are atomic eigenstates

[ o9+ (9] 0l = 20

Replacing the TB wave function into the Schrodinger equation




