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The energy in SP-DFT
We estimate the full DFT energy

EDFT =
∑
j~k

oj~k

〈
ψj~k

∣∣∣ t̂+vext

∣∣∣ψj~k

〉
+

1

2

∫∫
n(~r)n′(~r ′)

|~r −~r ′|
d3rd3r ′+Exc[n]+Enn

separating the density in reference and deformation contributions

n(~r) = n0(~r) + δn(~r)

and approximating the exchange-correlation functional by its
expansion in δn:

Exc[n] = Exc[n0]+

∫
δExc

δn(~r)

∣∣∣∣
n0

δn(~r)d3r+
1

2

∫∫
δ2Exc

δn(~r)δn(~r ′)

∣∣∣∣
n0

δn(~r)δn(~r ′)d3rd3r ′+· · ·

EDFT ≈ E (0)︸︷︷︸
lattice
n0(~r)

+ E (1) + E (2) + ...︸ ︷︷ ︸
electron excitations

δn(~r)
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Electron basis: Wannier functions
In order to express electron excitations we need basis:

Precise, small, material-adapted → Wannier-like functions

ΓΓ Γ

(a) (b) (c)

I. Souza et al.,Phys. Rev. B, 65, 035109 (2001)

|χa〉 =
V

(2π)3

∫
BZ

d~ke−i~k·~RA

M∑
m

Ba,m~k |ψm~k〉

Wannier functions...

1 are localized and so are ideal to build range-limited models

2 allow disentanglement of electron degrees of freedom

Reduced, meaningful physical models

3 are very accurate even with a small basis

4 are orthogonal

5 are defined for all geometries
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Electron basis: Density matrix in the WF basis
The different densities in the WF basis are:

n(~r) = n0(~r) + δn(~r)
Total n(~r) =

∑
ab dabχ

∗
a (~r)χb(~r) dab =

∑
j~k oj~ke

i~k(~RB−~RA)c∗
ja~k
cjb~k

Reference n0(~r) =
∑

ab d
0
abχ
∗
a (~r)χb(~r) d0

ab =
∑

j~k o
0
j~k
e i
~k(~RB−~RA)

(
c0
ja~k

)∗
c0
jb~k

Difference δn(~r) =
∑

ab Dabχ
∗
a (~r)χb(~r) Dab = dab − d0

ab

Our main variable is the Difference density

1 Density matrix represent:
I Diagonal occupation of an orbital
I Offdiagonal hybridization of two orbitals

2 The sign of Dab:
I positive for excited electrons
I negative for excited holes

3 Density matrix for an insulator is diagonal In metals decays rationally

dab = δaboa
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Obtaining the WFs and their occupation

We transform sets of bands into WFs

Example: BaTiO3

Wannier-Bloch transformation

|χa〉 =
M∑
m

V

2π3

∫
BZ

d~ke−i
~k·~RAB

a,m~k
|ψ

m~k
〉

1 Select bands
(energy windows)

2 Minimize spread

Key property to understand how the reference is defined:

A diagonal density matrix is only obtained from the transformation
of a set of Bloch states that are equally populated

o
(0)

j~k
= oJω~k ⇐⇒ d

(0)
ab = oJ δab
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Reference state

The reference state is the base to make the SP-DFT expansion

EDFT ≈ E (0)︸︷︷︸
lattice
n0(~r)

+ E (1) + E (2) + ...︸ ︷︷ ︸
electron excitations

δn(~r)

The reference state is identified with the reference density, n0:

1 n0 is not spin-polarized (avoid bias between up/down states)

2 It is continuously defined for all geometries (not just RAG)

3 In the Wannier-function (WF) basis it is characterized by a
fixed diagonal density matrix:

n0(~r) =
∑
ab

d
(0)
ab χa(~r)χb(~r) =

∑
a

o
(0)
a |χa(~r)|2 ⇐⇒ d

(0)
ab = δabo

(0)
a

4 n0 may be a real solution (DFT calculable) or be virtual
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Density matrix in spin-polarized simulation

Spin-polarized simulations have up/down spin components
Density matrixes are expressed in two complementary ways

dU
ab =

d↑ab + d↓ab

2
d I

ab =
d↑ab − d↓ab

2

I dU
ab,D

U
ab measure charge and charge differences

I d I
ab = D I

ab measures the magnetization

Non-magnetic Spin polarization

Total dab = dU
ab d↑ab, d

↓
ab→ dU

ab, d
I
ab

Reference d
(0)
ab d

(0)
ab

Difference Dab = DU
ab D↑ab,D

↓
ab→ DU

ab,D
I
ab
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Reference density and WF in the model xml file
They are associated to the 〈atom ...〉 ... 〈 /atom 〉 xml element

$ vi srtio3 noelec.xml

Each WF has its own 〈orbital ...〉 ... 〈 /orbital 〉 xml element

I It contains a name

I It contains the reference occupations ref occ up/ref occ dn

Careful modifying these values!

I It contains the initial occupations ini occ up/ini occ dn

Can be modified to converge to particular states

Also check read orbocc in input
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Pablo Garćıa-Fernández garciapa@unican.es Workshop: Energy in SPDFT



Reference density and WF in the model xml file
They are associated to the 〈atom ...〉 ... 〈 /atom 〉 xml element

$ vi srtio3 noelec.xml

Each WF has its own 〈orbital ...〉 ... 〈 /orbital 〉 xml element

I It contains a name

I It contains the reference occupations ref occ up/ref occ dn

Careful modifying these values!

I It contains the initial occupations ini occ up/ini occ dn

Can be modified to converge to particular states

Also check read orbocc in input
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The SP-DFT total energy
The full SP-DFT energy is:

E = E (0)({~uλ},←→η ) +
∑
ab

DU
ab[γRAG,sr

ab + δγel-lat,sr
ab ({~uλ})]

+
1

2

∑
ab

∑
a′b′

(
DU

abD
U
a′b′U

sr
aba′b′ − D I

abD
I
a′b′ Iaba′b′

)
+ E lg({DU})

Electron energy terms:

1 γRAG,sr
ab are the one-electron terms at the reference geometry

2 δγel-lat,sr
ab ({~uλ}) are the electron-lattice coupling terms

3 Usr
aba′b′

, Iaba′b′ are the two-electron terms

4 E lg({DU}) are the long-range (electrostatic) terms

All parameters are well-defined and evaluated at reference state

γab = 〈χa| ĥ[n0] |χb〉 Uaba′b′ = 〈χaχa′ | ĝ |χbχb′〉

g(~r ,~r ′) =
1

|~r −~r ′|
+

δ2Exc

δn(~r)δn(~r ′)

∣∣∣∣
n0

.

What is the associated one-electron hamiltonian?
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DU
ab[γRAG,sr
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+
1

2

∑
ab

∑
a′b′
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DU

abD
U
a′b′U

sr
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abD
I
a′b′ Iaba′b′

)
+ E lg({DU})
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The SP-DFT real-space Hamiltonian
The SP-DFT is formally equivalent to Hartree-Fock

The real-space one-electron Hamiltonian is a central part of the code

hsab = γRAG,sr
ab + δγel-lat,sr

ab ({~uλ}) +
∑
a′b′

(
DU

a′b′Uaba′b′ ± D I
a′b′ Iaba′b′

)
+ γ lr

ab

This expression contains the main parameters for the electron part:

1 γRAG,sr
ab short-range tight-binding

2 γlr
ab long-range electrostatic interactions

3 Uaba′b′ Hubbard two-electron parameter (RAG)

4 Iaba′b′ Stoner two-electron parameter (RAG)

5 δγel-lat,sr
ab ({~uλ}) electron-lattice terms (out of RAG)

The electron bands trivially obtained by going to reciprocal space:

hs
ab,~k

=
∑

~RB−~RA

e i
~k·(~RB−~RA)hsab −→

∑
b

hs
ab,~k

cs
jb~k

= εs
j~k
cs
ja~k
,

Let’s check them in detail...
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The reference one-electron terms in the model xml file

The SCALE-UP input: one-, two- and electron-lattice interactions.

One-electron interaction, γab

orbital 1 ⇐⇒ orbital 2
cell hop =⇒ 3 integers

Value =⇒ γab (eV)
Position =⇒

∫
χa~rχbd

3r

Example:

$ vi srtio3 noelec.xml

Composed of:
〈electron hamiltonian one ...〉 ... 〈 /electron hamiltonian one 〉 xml section
〈interaction gm ...〉 ... 〈 /interaction gm 〉 xml elements
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Geometry dependence - Introduction
WFs depend on geometry ⇒ γ is expanded on atomic positions:

γsr
ab = γ0

ab +
∑
λυ

[
−~fab,λυ · δ~rλυ + δ~rλυ ·

↔
g ab,λυ · δ~rλυ + ...

]
U,I should also depend on δ~r → neglected

These terms have two main effects:

1 lattice→electron hab depends on geometry

2 electron→lattice Forces depend on density

Closely related to Jahn-Teller Hamiltonian
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Geometry dependence - Lattice→Electron
~f and

↔
g influence electronic structure in 3 main ways:

1 Diagonal terms haa level-shift

2 Off-diagonal terms same-type orbitals hab band width

3 Off-diagonal terms different-type orbitals hab hybridization
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Geometry dependence - Electron→Lattice
Depending where electrons are placed they produce forces:

γsr
ab = γ0

ab +
∑
λυ

[
−~fab,λυ · δ~rλυ + δ~rλυ ·

↔
g ab,λυ · δ~rλυ + ...

]

The forces are :

~Fλ = −~∇λE = −~∇λE (0) −
∑

ab

Dab
~∇λγab

= ~F
(0)
λ +

∑
ab

Dab

∑
υ

(
~fab,λυ −

↔
g ab,λυ · δ~rλυ + ...

)
Depending where electron excitations are, force field is corrected
~fab represents the force when that interaction is occupied
↔
g ab,λυ corrects the force with distortion
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The electron-lattice terms in the model xml file
Electron-lattice interactions change hab based on atomic positions:

γsh
ab = γ0,sh

ab +
∑
λυ

[
−~fab,λυ · δ~rλυ +

∑
λ′υ′

δ~rλυ (g)ab,λυλ′υ′ δ~rλ′υ′ + ...

]
,

Electron-lattice interaction
Interaction ⇐⇒ γab

Atoms =⇒ from a
Linear =⇒ ~fab,λυ (eV/Å)

Quadratic =⇒ (g)ab,λυλ′υ′ (eV/Å2)

$ vi li2o2 latticeelectrons mod.xml

Composed of:
〈electron hamiltonian electron lattice 〉 xml section
〈interaction vb ...〉 ... 〈 /interaction gm 〉 xml elements
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The two-electron constants

Xaba′b′ =

∫
d3rχa(~r , s)χb(~r , s)

∫
d3r ′χa′(~r

′, s)χb′(~r ′, s)gX (~r ,~r ′, s, s ′)

The Hubbard two-electron constant:

gU(~r ,~r ′) =
1

|~r −~r ′|
+

1

2

[
δ2Exc

δn(~r , ↑)δn(~r ′, ↑)

∣∣∣∣
n0

+
δ2Exc

δn(~r , ↑)δn(~r ′, ↓)

∣∣∣∣
n0

]

1 Contains all classical electrostatic terms (Hartree)

2 They are corrected (screened) by exchange and correlation

The Stoner one-electron constant:

gI (~r ,~r
′) =

1

2

[
δ2Exc

δn(~r , ↑)δn(~r ′, ↓)

∣∣∣∣
n0

− δ2Exc

δn(~r , ↑)δn(~r ′, ↑)

∣∣∣∣
n0

]

1 Magnetic interactions

2 Pure quantum origin (exchange and correlation)
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Pablo Garćıa-Fernández garciapa@unican.es Workshop: Energy in SPDFT



The two-electron constants

Xaba′b′ =

∫
d3rχa(~r , s)χb(~r , s)

∫
d3r ′χa′(~r

′, s)χb′(~r ′, s)gX (~r ,~r ′, s, s ′)

The Hubbard two-electron constant:

gU(~r ,~r ′) =
1

|~r −~r ′|
+

1

2

[
δ2Exc

δn(~r , ↑)δn(~r ′, ↑)

∣∣∣∣
n0

+
δ2Exc

δn(~r , ↑)δn(~r ′, ↓)

∣∣∣∣
n0

]

1 Contains all classical electrostatic terms (Hartree)

2 They are corrected (screened) by exchange and correlation

The Stoner one-electron constant:

gI (~r ,~r
′) =

1

2

[
δ2Exc

δn(~r , ↑)δn(~r ′, ↓)

∣∣∣∣
n0

− δ2Exc

δn(~r , ↑)δn(~r ′, ↑)

∣∣∣∣
n0

]

1 Magnetic interactions

2 Pure quantum origin (exchange and correlation)
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The two-electron terms in the model xml file

The two-electron interactions modify the one-electron values:

hab = γab +
∑
a′b′

Da′b′Uab,a′b′

Describes how bands change when occupations change

Two-electron interaction
interactions ⇐⇒ γab, γa′b′

cell hop =⇒ 3 integers
Hubbard =⇒ Uab,a′b′ (eV)

Stoner =⇒ Iab,a′b′ (eV)

Example:

Composed of:
〈electron hamiltonian two ...〉 ... 〈 /electron hamiltonian two 〉 xml section
〈interaction ee ...〉 ... 〈 /interaction ee 〉 xml elements
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〈electron hamiltonian two ...〉 ... 〈 /electron hamiltonian two 〉 xml section
〈interaction ee ...〉 ... 〈 /interaction ee 〉 xml elements
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Electrostatics
All interactions in the model are between localized objects:

γ and U contain electrostatic
(long-range) contributions
Hartree/electron-nucleus

At long-range (far-field regime) shape of
source density is unimportant
Multipolar expansion!

We approximate the full charge density by a field of point charges and dipoles
localized at the reference geometry

Model parameters are separated in long and short contributions.

γab = γsr
ab + γlr

ab

Uaba′b′ = Usr
aba′b′ + U lr

aba′b′

The short-range part → quickly converging to zero
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Electrostatics:

The present electrostatics in code extend beyond original paper:
Stationary SP-DFT Time-dependent SP-DFT

(a) low (b) high (c) low (d) high 

I Electrostatics are charges+dipoles

I Dipoles sensitive to density not just
geometry

I Effect of electric fields on density

Same basics - the far-field potential

velec[n](~r) =
∑
λ

Zλ

|~r −~rλ|
+

∫
n(~r ′)

|~r −~r ′|
d3r ≈

∑
λ

qλ
|~r −~rλ|

+
∑
λ

~pλ
~r −~rλ
|~r −~rλ|3

Dipole definition changes

qλ = Zλ −
∑
a′∈λ

da′a′ ~pλ = Zλ~uλ −
∑
a′∈λ

[∑
b′

(da′b′~ra′b′)− da′a′~rλ

]
Definition of dipoles is consistent with modern theory of polarization
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Electrostatics: Matrix elements
Previously electrostatic matrix elements were just diagonal in ĥ
To calculate matrix element expand mid-way between WFs

vFF(~r , t) ≈ vFF

(
~ra +~rb

2
, t

)
− ~Eint

(
~ra +~rb

2
, t

)
~̂r + . . .

We now see the existence of diagonal and off-diagonal elements

hlr
ab ≈ −evFF

(
~ra +~rb

2
, t

)
〈χa| χb〉︸ ︷︷ ︸

diagonal

+ e

[
~Eext(t) + ~Eint

(
~ra +~rb

2
, t

)]
~rab︸ ︷︷ ︸

off-diagonal

We perform all electrostatic calculations on atomic centers

~Eint

(
~ra +~rb

2
, t

)
≈ 1

2

[
~Eint (~ra, t) + ~Eint (~rb, t)

]
During parameterization, the total matrix element is:

hDFT
ab ≈ hSP−DFT

ab = hlr
ab + hsr

ab
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Electrostatics: local dipoles
The local dipole on an atom is:

~pλ = Zλ~uλ −
∑
a′∈λ

[∑
b′

(da′b′~ra′b′)− da′a′~rλ

]

Noting that:

1 Reference and difference densities

dab = oaδab + Dab

2 WF real position (displaced from atom)

~rab = δab(~rλ(a) + ~uλ(a)) + δ~rab

~pλ = Zλ~uλ −
∑
a

oa~uλ︸ ︷︷ ︸
Born charge Z∗λ~uλ

−
∑

a

oaδ~ra︸ ︷︷ ︸
~p

(0)
λ

−
∑

a

Daa~uλ︸ ︷︷ ︸
ion

−
∑

a

Dabδ~rab︸ ︷︷ ︸
hybridization

I Zλ~uλ Born dipole for reference state

I ~p
(0)
λ is intrinsic dipole by WF position

I ion is dipole by displacing charge

I hybridization is dipole by mixing of orbitals
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Scaling

hsab = γRAG,sr
ab + δγel-lat,sr

ab ({~uλ}) +
∑
a′b′

(
DU,s

a′b′Uaba′b′ + D I ,s
a′b′ Iaba′b′

)
+ γ lr

ab

Building the matrix...

1 full elements −→ N4 (N = basis-size)

2 range limited −→ N·n3 (n = interactions per element)

In Scale-Up only non-null interactions are taking into account
Scaling in matrix-building is linear!

Diagonalization:

1 Full scaling is N3 (very slow)

2 Lanczos has better scaling (not implemented yet)

3 Other methods are being explored (using TD)
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Summary of electron hamiltonians

The electron part of SP-DFT is based on a real-space approach:

hsab = γRAG,sr
ab + δγel-lat,sr

ab ({~uλ}) +
∑
a′b′

(
DU,s

a′b′Uaba′b′ + D I ,s
a′b′ Iaba′b′

)
+ γ lr

ab

It contains the following terms:

1 γRAG,sr
ab short-range tight-binding

2 γ lr
ab long-range electrostatic interactions

3 Uaba′b′ Hubbard two-electron parameter (RAG)

4 Iaba′b′ Stoner two-electron parameter (RAG)

5 δγel-lat,sr
ab ({~uλ}) electron-lattice terms (out of RAG)

SP-DFT is formally equivalent to Hartree-Fock

Range-limited terms would allow to obtain linear scaling
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